The Future of Springs | Katy Spring

The future of springs holds a lot of unknowns. Manufacturing techniques continue to evolve, and will continue to evolve.

One of the hottest industries for the future of spring manufacturing involves electronics and micro-spring manufacturing methods.

Demands of the rapidly growing computer and cellular phone industries are pushing spring manufacturers to develop reliable, cost-effective techniques for making very small springs. Springs that support keys on touchpads and keyboards are important, but there are less apparent applications as well. For instance, a manufacturer of test equipment used in semiconductor production has developed a microspring contact technology. Thousands of tiny springs, only 40 mils (0.040 in or 1 mm) high, are bonded to individual contact points of a semiconductor wafer. When this wafer is pressed against a test instrument, the springs compress, establishing highly reliable electrical connections.

Medical devices also use very small springs. A coiled spring has been developed for use in the insertion end of a catheter or an endoscope. Made of wire 0.0012 in (30 micrometers or 0.030 mm) in diameter, the spring is 0.0036 in (0.092 mm) thick—about the same as a human hair. The Japanese company that developed this spring is attempting to make it even smaller.

The ultimate miniaturization accomplished so far was accomplished in 1997 by an Austrian chemist named Bernard Krautler. He built a molecular spring by stringing 12 carbon atoms together and attaching a vitamin B12 molecule to each end of the chain by means of a cobalt atom. In the relaxed state the chain has a zigzag shape; when it is wetted with water, however, it kinks tightly together. Adding cyclodextrin causes the chain to return to its relaxed state. No practical application of this spring has yet been found, but research continues.

Katy Spring & Mfg. Inc.